
1.1. THE TRANSPORTATION PATHS ROUTING SEMANTIC
DESCRIPTION

This chapter presents a semantic network formalism based on frame logic. Advanced techniques including

HiLog extensions, transaction logic and dynamic module creation are applied to the problem of preferential

routing and rerouteing. The deductive program is implemented in the FLORA-2 reasoning engine, which allows

for scalable query execution. In the end possible extensions to the system and guidelines for future research are

presented.

1.1.1. Introduction

Transportation networks are networks which show linkage relationships among

numerous nodes [6]. Routing in transportation network usually deals with questions

like [4]:

• What is the most efficient routing between two locations?

• What is a reasonable set of alternative routes if a segment of the transportation

network is blocked?

• What are the comparison of costs for routing freight by highway, rail, or

waterway?

• What additional travel times result from increasing traffic congestion along

routes?

• What are the effects of changes in transportation costs, demands, or policies?

Route selection problem is present in various forms in transport networks. Bošnjak and

Badanjak [1, p. 38] in their book on Basics of traffic engineering gave a general model

for route, mode and time selection problem shown on figure 1.1.1.

Fig.1.1.1 General model of route, preference and time selection problem

In general, to generate alternative routes for transportation many nodes and links

which connect location for departure and destination have to be connected. Most

common variables taken into consideration are departure location, destination,

departure time, arrival time [6].

This paper takes the routing problem to the next level and adds more variables, for

example, type of desired road, landscape type, stores on the way etc.

First part of the paper defines the syntax and semantics of frame logic, and defines

semantic transport networks using graph theory. Next, the implementation in LORA-

2 is shown, along with examples and directions for future research.

1.1.2. Frame logic

In the following we will define the syntax and semantics of frame logic.

Definition 1 (Frame logic alphabet)

The alphabet of an F-logic language consists of the following [5]:

• a set of object constructors, ;

• an infinite set of variables, ;

• auxiliary symbols, such as, (,), , , , , , , , , etc.; and

• usual logical connectives and quantifiers, , , , , , .

Object constructors (the elements of) play the role of function symbols in F-logic

whereby each function symbol has an arity. The arity is a non-negative integer that

represents the number of arguments the symbol can take. A constant is a symbol with

The Transportation Network… 13

arity 0, and symbols with arity 1 are used to construct larger terms out of simpler

ones. An id-term is a usual first-order term composed of function symbols and

variables, as in predicate calculus. The set of all variable free or ground id-terms is

denoted by and is commonly known as Herbrand Universe. Id-terms play the role

of logical object identities in F-logic which is a logical abstraction of physical object

identities.

A language in F-logic consists of a set of formulae constructed out of alphabet

symbols. As in a lot of other logics, formulas are built out of simpler ones by using the

usual logical connectives and quantifiers mentioned above. The most simple formulas

in F-logic are called F-molecules.

Definition 2 (F-molecule)

A molecule in F-logic is one of the following statements:

• An is-a assertion of the form (is a nonstrict subclass of) or of the form

 (is a member of class), where , and are id-terms;

• An object molecule of the form O [a ’;’ separated list of method expressions]

where is a id-term that denotes and object. A method expression can be either

a non-inheritable data expression, an inheritable data expression, or a signature

expression:

• Non-inheritable data expressions can be in either of the following two

forms:

• A non-inheritable scalar expression ,().

• A non-inheritable set-valued expression

 ().

• Inheritable scalar and set-valued expression are equivalent to their non-

inheritable counterparts except that is replaced with , and with

• Signature expression can also take two different forms:

• A scalar signature expression ,

().

• A set valued signature expression

().

All methods’ left hand sides (e. g. , , and) denote arguments, whilst the right

hand sides (e. g. and) denote method outputs. Single-headed arrows (,

and) denote scalar methods and double-headed arrows (, and) denote set-

valued methods.

Having the prerequisites defined we are now able to define F-formulae:

Definition 3 (F-formuale)

F-formulae are define recurively:

• F-molecules are F-formulae;

• , , and , are F-formulae if so are and ;

• and are F-formulae, so are and , and and are variables.

For our purpose these definitions of F-logic are sufficient but the interested reader is

advised to consult [5] for profound logical foundations of object-oriented and frame

based languages.

1.1.3. Semantic transport networks

To define semantic transport networks we will first use graph theory [3, 9] and

afterwards formalize the approach by using frame logic.

Definition 4 A graph is the pair whereby represents the set of verticles or

nodes, and the set of edges connecting pairs from .

The notion of directed- and valued directed graphs is of special importance to our

study.

Definition 5 A directed graph or digraph is the pair , whereby represents

the set of nodes, and the set of ordered pairs of elements from that

represent the set of graph arcs.

Definition 6 A valued or weighted digraph is the triple whereby

represents the set of nodes or verticles, the set of ordered pairs of elements

from that represent the set of graph arcs, and a function that attaches

values or weights to arcs.

A transport network can now be defined as a valued digraph in which nodes represent

crossings between routes, arcs represent routes between nodes and weight represent

the distance between nodes covered by arcs. The network has to be directed since there

are one-way routes. Now, consider the following definition of a semantic transport

network.

Definition 7 Let be a valued digraph. Let further be

an extensible set of attributes, and an extensible setof values,

and let and be two mappings which map attribute-value

pairs to nodes and arcs respectively. We define the tuple to

be a semantic transport network.

The Transportation Network… 15

The definition adds semantics in form of attribute-value tuples to the transport

network. Consider the following example:

The semantics of this network are depicted on figure 1.1.2. Note that the node

annotation () has intentionally been left empty () for sake of simlicity. In the

following we will use this example and implement it using LORA-2 .

Fig.1.1.2 Semantic transport network example

Now consider the following problem (preferential routing): find the shortest path

from node to node conforming to a set such that it holds that

, and conforming to a set such that

 it holds that .

1.1.4. Implementation

The implementation in LORA-2 [11] follows an object-oriented approach. Two

classes are defined: nodes and routes, whereby nodes are intersections between routes.

In the following listing we define to be instances of class node. These

instances would usually have additional attributes like lattitude and longitude.

a:node. b:node. c:node. d:node. e:node. f:node. g:node.

The following listing shows how routes (edges) are implemented. As one can see,

three additional attributes where used to model source (attribute from), destination

(attribute to) and route length (attribute length).

p1:route[

 from->a,

 to->b,

 length->1,

 type->highway,

 landscape->farmland].

p2:route[

 from->a,

 to->c,

 length->2,

 type->country_road,

 landscape->forest].

...

Having the basic classes defined, we are now able to define the specific methods. Prior

to that we need to define LORA-2 modules, transaction logic and HiLog extensions,

which are specific for this logical platform. LORA-2 modules are logical abstractions

that allow us to split large programs into smaller instances and to facilitate reuse [10,

p. 25]. A module consists formally of a name and a content. In a way, modules in

LORA-2 are similar to namespaces, that allow us to query only one part of a

(potentially large) knowledge base. To call any literal (F-molecule or predicate) that is

defined in some other module that the actual the following syntax is used:

LORA-2 also supports dynamic updates of the knowledge base [10, pp. 74 - 89]. The

following syntax allows us to insert facts into the knowledge base at runtime:

whereby insop can be any of insert, insertall, delete, deleteall, erase or eraseall. For our

purpose we will use the insertall statement which inserts all literals that satisfy a given

formula. Additionally, to create and erase modules on runtime the we will use the

The Transportation Network… 17

 and statements, respectively.

LORA-2 uses HiLog [2] as its default predicate representation. This in essence

means that complex terms can appear wherever a function symbol is allowed [10, p.

42].

In order to reduce the search space and filter out only relevant routes, we will take

the following strategy:

1. A new module is created on runtime

2. Facts (nodes and routes) that pass through the user supplied filters are inserted

into the new module

3. A query is issued towards the new module to find the shortest path

4. The results are delivered and the module is erased

Since all queries will be issued against a newly created module, we need to find that

module at runtime. This is why the module name will be a logic variable in all the

following predicates. First we implement the path_to/2 method which allows us to

query for paths to other nodes from a given one. The implementation is recursive, as

usual:

?x:node[path_to(?y, ?mod) -> [?x, ?y]] :-

 ?_:route[from->?x, to->?y]@?mod.

?x:node[path_to(?y, ?mod) -> [?x, ?z | ?t]] :-

 ?_[from->?x, to->?z]@?mod,

 ?z[path_to(?y, ?mod) -> [?z | ?t]].

With such a method defined we can now issue the query “show all paths from node d

to node g“ (main being the current module):

flora2 ?- d[path_to(g, main)->?p].

?p = [d, f, h, g]

In order to find the length of a path to a given node we implement the following

method (path_length_to):

?x:node[path_length_to(?y, ?mod) -> ?l] :-

 ?x[path_to(?y, ?mod) -> [?x, ?y]],

 ?_:route[from->?x, to->?y, length->?l]@?mod.

?x:node[path_length_to(?y, ?mod) -> ?l] :-

 ?x[path_to(?y, ?mod) -> [?x, ?z | ?t]],

 ?_:route[from->?x, to->?z, length->?l1]@?mod,

 ?z[path_to(?y, ?mod) -> [?z | ?t]],

 ?z[path_length_to(?y, ?mod) -> ?l2],

 ?l is ?l1 + ?l2.

Now we can ask the question ”What are the lengths of all paths from d to g? ” The

following query yields the answer.

flora2 ?- d[path_length_to(g, main)->?l].

?l = 8

In order to be able to compare lengths of different paths, we implement the following

auxiliary predicate (path_length).

path_length([?x, ?y], ?l, ?mod) :-

 ?_:route[from->?x, to->?y, length->?l]@?mod.

path_length([?x, ?y | ?t], ?l, ?mod) :-

 ?_:route[from->?x, to->?y, length->?l1]@?mod,

 path_length([?y | ?t], ?l2, ?mod),

 ?l is ?l1 + ?l2.

The following query shows the behavior of this predicate:

flora2 ?- path_length([d, f, h, g], ?l, main).

?l = 8

Now we are able to implement the minimal_path_to method which will allow us to

find the minimal path between two nodes.

?x:node[minimal_path_to(?y, ?mod) -> ?p] :-

 ?m = min{ ?l | ?x[path_length_to(?y, ?mod)->?l] },

 ?x[path_to(?y, ?mod) -> ?p],

 path_length(?p, ?m, ?mod).

As one can see the method makes use of the min aggragate function which finds the

minimal path length. We can now ask the question “what is the minimal path from a to

g? ” using the following query:

flora2 ?- a[minimal_path_to(g, main) -> ?p].

?p = [a, c, e, g]

Now we need to implement a mechanism to filter out only those nodes/routes which

conform to a set of user supplied preferences. A generic way to do this is to use HiLog

as is done in the following predicate (filter).

filter([], ?_).

filter([?x->?y | ?t], ?p) :-

 ?p[?x -> ?y],

 filter(?t, ?p).

The first parameter is a list of attributes with corresponding values, and the second is

The Transportation Network… 19

an object from the knowledge base. The predicate succedes iff the object has all

attribute-value pairs which were supplied. Consider the following problem: “find all

routes which are highway paths and go through farmland”. The following query solves

the problem:

flora2 ? - filter([type->highway, landscape->farmland], ? p).

flora2 ?- filter([type->country_road, landscape->forrest],

?p).

?p = p2

?p = p5

The same query would apply to nodes if nodes were also annotated with additional

semantics. In this way we could have filtered out only those nodes which are in some

geographical area for example.

Now we can implement the preference_path predicate which will find a minimal

path that conforms to user specified filters. First only those routes that conform to all

filters are inserted in to a new module, and then a minimal path query is issued.

preference_path(?from, ?to, ?filters, ?p) :-

 insertall{

 ?p:route[?x->?y]@pref |

 ?p:route[?x->?y],

 filter(?filters, ?p) },

 ?from[minimal_path_to(?to, pref) -> ?p].

We can now ask the question: “What are the shortest paths from a to g that are

highway paths and go through farmland? ” In order to issue such a query we first need

to create a new module.

flora2 ?- newmodule{ pref },

preference_path(a, g, [type->highway,landscape->farmland], ?p

),

erasemodule{ pref }.

?p = [a, b, e, g]

?p = [a, d, f, h, g]

1.1.5. Conclusion

The paper presented semantic transport networks and their application to the

preferential routing problem. The frame logic formalism was used to represent

semantic transport networks and the LORA-2 reasoning engine was used for

implementation. We demonstrated how advanced techniques like HiLog, transaction

logic and dynamic modules can be used to avoid known obstacles.

One such obstacle is the combinatorial explosion that can lead to inefficient queries

when solving routing problems with logic programming due to a multiple recursive

procedure. By filtering out facts to a dynamic module, the fact base is dramatically

reduced, and queries are faster and more efficient.

We believe that this approach can be taken even further by applying geographical

filters as outlined already. Due to reasonable Python [7] and the Python Google API,

the implemented system can be easily connected to Google Maps; and due to F-OWL

[12] it can be connected to any OWL based ontology [8]. We leave the implementation

of geographical and other filters to future research.

The Transportation Network… 21

 BIBLIOGRAPHY

[1] Bošnjak, I., and Badanjak, D.: Osnove prometnog inženjerstva. Fakultet prometnih

znanosti, Zagreb, Croatia, 2005.

[2] Chen, W., Kifer, M., and Warren, D. S.: Hilog: A foundation for higher-order logic

programming. Journal of Logic Programming 15, 3 (Feb. 1993), 187–230.

[3] Divjak, B., and Lovrenčić, A.: Diskretna matematika s teorijom grafova. TIVA &

Faculty of Organization and Informatics, 2005.

[4] Harrison, G.: Transportation network routing models. http://www.ornl.gov/sci/ees/

etsd/cta/RCB_Transportation%20Network%20Rou%ting%20Models.pdf,

1.2.2011., 2011.

[5] Kifer, M., Lausen, G., and Wu, J.: Logical foundations of object-oriented and

frame-based languages. Journal of the Association for Computing Machinery 42

(May 1995), 741–843.

[6] Park, B. J., Kang, M. H., Choi, H. R., and Kim, H. S.: Development of intellectual

route selection system for intermodal transportation. In International Conference on

Logistics, Shipping and Port Management (2007).

[7] Schatten, M.: Reasonable python or how to integrate f-logic into an object -

oriented scripting language. In 11 th International Conference on Intelligent

Engineering Systems Proceedings (2007), I. Rudas, Ed., IEEE, pp. 297–300.

[8] W3C.: Owl web ontology language overview - w3c recommendation, Feb. 2004.

[9] Wasserman, S., and Faust, K.: Social Network Analysis ; Methods and

Applications. Structural analysis in the social sciences. Cambridge University Press,

1994.

[10] Yang, G., Kifer, M., Wan, H., and Zhao, C.: FLORA-2: User’s Manual Version

0.95 (Androcymbium), Apr. 2008.

[11] Yang, G., Kifer, M., and Zhao, C.: Flora-2: A rule-based knowledge representation

and inference infrastructure for the semantic web. In Second International

Conference on Ontologies, Databases and Applications of Semantics (ODBASE)

Proceedings (Catania, Sicily, Italy, November 2003).

[12] Zou, Y., Finin, T., and Chen, H.: F-owl: An inference engine for semantic web. In

Formal Approaches to Agent-Based Systems, M. Hinchey, J. Rash,

W. Truszkowski, and C. Rouff, Eds., vol. 3228 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2005, pp. 238–248.

Authors:

Markus Schatten

Faculty of organization and informatics, Varaždin, Croatia

 markus.schatten@foi.hr

Miroslav Bača

Faculty of organization and informatics, Varaždin, Croatia

miroslav.baca@foi.hr

Petra Koruga

Faculty of organization and informatics, Varaždin, Croatia

petra.koruga@foi.hr

