
1.1. THE TRANSPORTATION PATHS ROUTING SEMANTIC 
DESCRIPTION 

This chapter presents a semantic network formalism based on frame logic. Advanced techniques including 

HiLog extensions, transaction logic and dynamic module creation are applied to the problem of preferential 

routing and rerouteing. The deductive program is implemented in the FLORA-2 reasoning engine, which allows 

for scalable query execution. In the end possible extensions to the system and guidelines for future research are 

presented. 

1.1.1. Introduction 

Transportation networks are networks which show linkage relationships among 

numerous nodes [6]. Routing in transportation network usually deals with questions 

like [4]:  

• What is the most efficient routing between two locations?  

• What is a reasonable set of alternative routes if a segment of the transportation 

network is blocked?  

• What are the comparison of costs for routing freight by highway, rail, or 

waterway?  

• What additional travel times result from increasing traffic congestion along 

routes?  

• What are the effects of changes in transportation costs, demands, or policies?  

Route selection problem is present in various forms in transport networks. Bošnjak and 

Badanjak [1, p. 38] in their book on Basics of traffic engineering gave a general model 

for route, mode and time selection problem shown on figure 1.1.1. 



 

Fig.1.1.1 General model of route, preference and time selection problem 

 

In general, to generate alternative routes for transportation many nodes and links 

which connect location for departure and destination have to be connected. Most 

common variables taken into consideration are departure location, destination, 

departure time, arrival time [6]. 

This paper takes the routing problem to the next level and adds more variables, for 

example, type of desired road, landscape type, stores on the way etc. 

First part of the paper defines the syntax and semantics of frame logic, and defines 

semantic transport networks using graph theory. Next, the implementation in LORA-

2 is shown, along with examples and directions for future research. 

 

1.1.2. Frame logic 

In the following we will define the syntax and semantics of frame logic. 

 

Definition 1 (Frame logic alphabet)  

The alphabet of an F-logic language  consists of the following [5]: 

• a set of object constructors, ;  

• an infinite set of variables, ;  

• auxiliary symbols, such as, (, ), , , , , , , , , etc.; and  

• usual logical connectives and quantifiers, , , , , , .  

 

Object constructors (the elements of ) play the role of function symbols in F-logic 

whereby each function symbol has an arity. The arity is a non-negative integer that 

represents the number of arguments the symbol can take. A constant is a symbol with 
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arity 0, and symbols with arity  1 are used to construct larger terms out of simpler 

ones. An id-term is a usual first-order term composed of function symbols and 

variables, as in predicate calculus. The set of all variable free or ground id-terms is 

denoted by  and is commonly known as Herbrand Universe. Id-terms play the role 

of logical object identities in F-logic which is a logical abstraction of physical object 

identities. 

A language in F-logic consists of a set of formulae constructed out of alphabet 

symbols. As in a lot of other logics, formulas are built out of simpler ones by using the 

usual logical connectives and quantifiers mentioned above. The most simple formulas 

in F-logic are called F-molecules. 

 

Definition 2 (F-molecule)  

A molecule in F-logic is one of the following statements: 

• An is-a assertion of the form  (  is a nonstrict subclass of ) or of the form 

 (  is a member of class ), where ,  and  are id-terms;  

• An object molecule of the form O [ a ’;’ separated list of method expressions ] 

where  is a id-term that denotes and object. A method expression can be either 

a non-inheritable data expression, an inheritable data expression, or a signature 

expression:  

• Non-inheritable data expressions can be in either of the following two 

forms:  

• A non-inheritable scalar expression ,( ).  

• A non-inheritable set-valued expression  

 ( ).  

• Inheritable scalar and set-valued expression are equivalent to their non-

inheritable counterparts except that  is replaced with , and  with  

• Signature expression can also take two different forms:  

• A scalar signature expression , 

( ).  

• A set valued signature expression  

( ).  

All methods’ left hand sides (e. g. , ,  and ) denote arguments, whilst the right 

hand sides (e. g.  and ) denote method outputs. Single-headed arrows ( ,  

and ) denote scalar methods and double-headed arrows ( ,  and ) denote set-

valued methods.  

 

Having the prerequisites defined we are now able to define F-formulae: 

 

Definition 3 (F-formuale)  

F-formulae are define recurively:  



• F-molecules are F-formulae;  

• , , and , are F-formulae if so are  and ;  

•  and  are F-formulae, so are  and , and  and  are variables.  

 

For our purpose these definitions of F-logic are sufficient but the interested reader is 

advised to consult [5] for profound logical foundations of object-oriented and frame 

based languages. 

 

1.1.3. Semantic transport networks 

To define semantic transport networks we will first use graph theory [3, 9] and 

afterwards formalize the approach by using frame logic. 

 

Definition 4 A graph  is the pair  whereby  represents the set of verticles or 

nodes, and  the set of edges connecting pairs from .  

 

The notion of directed- and valued directed graphs is of special importance to our 

study. 

 

Definition 5 A directed graph or digraph  is the pair , whereby  represents 

the set of nodes, and  the set of ordered pairs of elements from  that 

represent the set of graph arcs.  

 

Definition 6 A valued or weighted digraph  is the triple  whereby  

represents the set of nodes or verticles,  the set of ordered pairs of elements 

from  that represent the set of graph arcs, and  a function that attaches 

values or weights to arcs.  

 

A transport network can now be defined as a valued digraph in which nodes represent 

crossings between routes, arcs represent routes between nodes and weight represent 

the distance between nodes covered by arcs. The network has to be directed since there 

are one-way routes. Now, consider the following definition of a semantic transport 

network. 

 

Definition 7 Let  be a valued digraph. Let further  be 

an extensible set of attributes, and  an extensible setof values, 

and let  and  be two mappings which map attribute-value 

pairs to nodes and arcs respectively. We define the tuple  to 

be a semantic transport network.  
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The definition adds semantics in form of attribute-value tuples to the transport 

network. Consider the following example: 

 

 
 

The semantics of this network are depicted on figure 1.1.2. Note that the node 

annotation ( ) has intentionally been left empty ( ) for sake of simlicity. In the 

following we will use this example and implement it using LORA-2 . 

 

 

Fig.1.1.2 Semantic transport network example 

 



Now consider the following problem (preferential routing): find the shortest path  

from node  to node  conforming to a set  such that  it holds that 

, and conforming to a set  such that 

 it holds that . 

 

1.1.4. Implementation 

The implementation in LORA-2 [11] follows an object-oriented approach. Two 

classes are defined: nodes and routes, whereby nodes are intersections between routes. 

In the following listing we define  to be instances of class node. These 

instances would usually have additional attributes like lattitude and longitude. 
 

a:node. b:node. c:node. d:node. e:node. f:node. g:node. 
 

The following listing shows how routes (edges) are implemented. As one can see, 

three additional attributes where used to model source (attribute from), destination 

(attribute to) and route length (attribute length).  
 

p1:route[  

  from->a,  

  to->b,  

  length->1,  

  type->highway,  

  landscape->farmland ]. 

p2:route[  

  from->a,  

  to->c,  

  length->2,  

  type->country_road,  

  landscape->forest ]. 

... 

 

Having the basic classes defined, we are now able to define the specific methods. Prior 

to that we need to define LORA-2 modules, transaction logic and HiLog extensions, 

which are specific for this logical platform. LORA-2 modules are logical abstractions 

that allow us to split large programs into smaller instances and to facilitate reuse [10, 

p. 25]. A module consists formally of a name and a content. In a way, modules in 

LORA-2 are similar to namespaces, that allow us to query only one part of a 

(potentially large) knowledge base. To call any literal (F-molecule or predicate) that is 

defined in some other module that the actual the following syntax is used: 
 

LORA-2 also supports dynamic updates of the knowledge base [10, pp. 74 - 89]. The 

following syntax allows us to insert facts into the knowledge base at runtime: 
 

whereby insop can be any of insert, insertall, delete, deleteall, erase or eraseall. For our 

purpose we will use the insertall statement which inserts all literals that satisfy a given 

formula. Additionally, to create and erase modules on runtime the we will use the 
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 and  statements, respectively. 

LORA-2 uses HiLog [2] as its default predicate representation. This in essence 

means that complex terms can appear wherever a function symbol is allowed [10, p. 

42]. 

 

In order to reduce the search space and filter out only relevant routes, we will take 

the following strategy:  

1. A new module is created on runtime  

2. Facts (nodes and routes) that pass through the user supplied filters are inserted 

into the new module  

3. A query is issued towards the new module to find the shortest path  

4. The results are delivered and the module is erased  

Since all queries will be issued against a newly created module, we need to find that 

module at runtime. This is why the module name will be a logic variable in all the 

following predicates. First we implement the path_to/2 method which allows us to 

query for paths to other nodes from a given one. The implementation is recursive, as 

usual: 
 

?x:node[ path_to( ?y, ?mod ) -> [ ?x, ?y ] ] :- 

  ?_:route[ from->?x, to->?y ]@?mod. 

 

?x:node[ path_to( ?y, ?mod ) -> [ ?x, ?z | ?t ] ] :- 

  ?_[ from->?x, to->?z ]@?mod, 

  ?z[ path_to( ?y, ?mod ) -> [ ?z | ?t ] ]. 
 

With such a method defined we can now issue the query “show all paths from node d 

to node g“ (main being the current module): 
 

flora2 ?- d[ path_to( g, main )->?p ]. 

 

?p = [d, f, h, g] 
 

In order to find the length of a path to a given node we implement the following 

method (path_length_to): 
 

?x:node[ path_length_to( ?y, ?mod ) -> ?l ] :- 

  ?x[ path_to( ?y, ?mod ) -> [ ?x, ?y ] ], 

  ?_:route[ from->?x, to->?y, length->?l ]@?mod. 

 

?x:node[ path_length_to( ?y, ?mod ) -> ?l ] :- 

  ?x[ path_to( ?y, ?mod ) -> [ ?x, ?z | ?t ] ], 

  ?_:route[ from->?x, to->?z, length->?l1 ]@?mod, 

  ?z[ path_to( ?y, ?mod ) -> [ ?z | ?t ] ], 

  ?z[ path_length_to( ?y, ?mod ) -> ?l2 ], 

  ?l is ?l1 + ?l2. 
 

Now we can ask the question ”What are the lengths of all paths from d to g? ” The 



following query yields the answer. 
 

flora2 ?- d[ path_length_to( g, main )->?l ]. 

 

?l = 8 
 

In order to be able to compare lengths of different paths, we implement the following 

auxiliary predicate (path_length). 
 

path_length( [ ?x, ?y ], ?l, ?mod ) :- 

  ?_:route[ from->?x, to->?y, length->?l ]@?mod. 

 

path_length( [ ?x, ?y | ?t ], ?l, ?mod ) :- 

  ?_:route[ from->?x, to->?y, length->?l1 ]@?mod, 

  path_length( [ ?y | ?t ], ?l2, ?mod ), 

  ?l is ?l1 + ?l2. 
 

The following query shows the behavior of this predicate: 
 

flora2 ?- path_length( [d, f, h, g], ?l, main ). 

 

?l = 8 

 

Now we are able to implement the minimal_path_to method which will allow us to 

find the minimal path between two nodes. 
   

?x:node[ minimal_path_to( ?y, ?mod ) -> ?p ] :- 

  ?m = min{ ?l | ?x[ path_length_to( ?y, ?mod )->?l ] }, 

  ?x[ path_to( ?y, ?mod ) -> ?p ], 

  path_length( ?p, ?m, ?mod ). 

 

As one can see the method makes use of the min aggragate function which finds the 

minimal path length. We can now ask the question “what is the minimal path from a to 

g? ” using the following query: 
   

flora2 ?- a[ minimal_path_to( g, main ) -> ?p ]. 

 

?p = [a, c, e, g] 
 

Now we need to implement a mechanism to filter out only those nodes/routes which 

conform to a set of user supplied preferences. A generic way to do this is to use HiLog 

as is done in the following predicate (filter). 
 

filter( [], ?_ ). 

filter( [ ?x->?y | ?t ], ?p ) :- 

  ?p[ ?x -> ?y ], 

  filter( ?t, ?p ). 
 

The first parameter is a list of attributes with corresponding values, and the second is 
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an object from the knowledge base. The predicate succedes iff the object has all 

attribute-value pairs which were supplied. Consider the following problem: “find all 

routes which are highway paths and go through farmland”. The following query solves 

the problem: 

flora2 ? - filter( [ type->highway, landscape->farmland ], ? p ). 
 

flora2 ?- filter( [ type->country_road, landscape->forrest ], 

?p ). 

 

?p = p2 

?p = p5 
 

The same query would apply to nodes if nodes were also annotated with additional 

semantics. In this way we could have filtered out only those nodes which are in some 

geographical area for example. 

Now we can implement the preference_path predicate which will find a minimal 

path that conforms to user specified filters. First only those routes that conform to all 

filters are inserted in to a new module, and then a minimal path query is issued. 
 

preference_path( ?from, ?to, ?filters, ?p ) :- 

  insertall{  

    ?p:route[ ?x->?y ]@pref |  

    ?p:route[ ?x->?y ],  

    filter( ?filters, ?p ) }, 

  ?from[ minimal_path_to( ?to, pref ) -> ?p ]. 
 

We can now ask the question: “What are the shortest paths from a to g that are 

highway paths and go through farmland? ” In order to issue such a query we first need 

to create a new module. 
 

flora2 ?- newmodule{ pref },  

preference_path( a, g, [type->highway,landscape->farmland], ?p 

),   

erasemodule{ pref }. 

 

?p = [a, b, e, g] 

?p = [a, d, f, h, g] 

 

1.1.5. Conclusion  

The paper presented semantic transport networks and their application to the 

preferential routing problem. The frame logic formalism was used to represent 

semantic transport networks and the LORA-2 reasoning engine was used for 

implementation. We demonstrated how advanced techniques like HiLog, transaction 

logic and dynamic modules can be used to avoid known obstacles.  

One such obstacle is the combinatorial explosion that can lead to inefficient queries 

when solving routing problems with logic programming due to a multiple recursive 

procedure. By filtering out facts to a dynamic module, the fact base is dramatically 



reduced, and queries are faster and more efficient.  

We believe that this approach can be taken even further by applying geographical 

filters as outlined already. Due to reasonable Python [7] and the Python Google API, 

the implemented system can be easily connected to Google Maps; and due to F-OWL 

[12] it can be connected to any OWL based ontology [8]. We leave the implementation 

of geographical and other filters to future research. 
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